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3 ABSTRACT

The scaling technique has been used often in designing efficient algorithms for com-

binatorial optimization problems. This paper unifies problem-specific scaling approaches

into a linear programming framework. Solution of linear programs by scaling involves suc-

cessive solutions of what we call the tuning problem. This tuning problem arises when one %

transforms a solution for the previous scale into a solution for the next scale. We show that

the tuning problem has a nice format under certain assumptions, and it is precisely this con-

venience which has led to fast scaling algorithms for many combinatorial problems. We also
'p

examine schemes that use a relaxation of complementary slackness, and we show that one

such scheme is equivalent to scaling. We propose a generalization of an approximation algo-

rithm by Gabow and Tarjan and discuss its application to the tuning problem. Finally, we dis-

cuss scaling of the shortest path problem and the weighted matching problem in our linear p

programming framework.
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INTRODUCTION

The scaling technique has been effective in designing efficient algorithms for weighted

combinatorial problems that can be formulated as linear programs on integer polyhedra, such

as shortest s-t path and weighted matchings. Edmonds and Karp [21 presented the first scaling

algorithm for network flow problems. Later Gabow [3] [4] proposed scaling algorithms for a

variety of weighted combinatorial problems. In this paper we unify the approaches of Gabow -F

and others into a linear programming framework.

The typical scaling algorithm works as follows. Given the problem P with an integer

vector of weights w, the algorithm recursively solves a problem P' that is identical to prob-

lem P but with w replaced by L w Then using the solution to P' it produces a solution to

P. Thus if this step takes time T(n), where n is a measure of the size of the problem, then the

algorithm solves P in time T(n) log W, where W is the largest weight in the problem.

Scaling may be seen as a method of "combinatorializing" an optimization problem.

The technique is not as powerful as the Primal-Dual algorithm: While the Primal-Dual algo-

rithm leads to a series of (0,I1 weighted problems, the scaling algorithm leads to (0,1,...,k) I.

weighted problems. Nevertheless, scaling is sufficiently powerful to yield efficient algorithms

with sophisticated data structures.

In Section I we first present a linear programming (LP) interpretation of scaling. We

discuss the operation of the scaling algorithm on an integer LP, and we formulate the prob-

."lem of transforming a solution to P into a solution to P'. We call this transformation problem

the tuning problem. We obtain results on general LPs that have been used in many specific

scaling algorithms. Using these results, we simplify the scaling algorithm of Gabow for 5

I' weighted general matching [4]. In Section 2 we present an analysis of Bertsekas's approxi-

,,
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mate complementary slackness technique [1] and show its equivalence to scaling. We also

examine successive approximation methods for solving the tuning problem. In Section 3 we

show how specific scaling algorithms can be cast in the general framework of Section 1. An

alternate formulation of the general weighted matching algorithm is presented.

a -4
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CHAPTER 1 6

SCAUNG OF LINAR PROGRAMS

Let A be a matrix and b, c be vectors. Consider the linear program

min cx

Ax=b (1.1A)

Let us assume that we have solved (I.IA) above. We shall examine how this has helped us in

solving the perturbed LP (1.2A) below.

min cx+dx

Ax -b (1.2A)

X0

If the vector d has special properties, then we shall see that solving (L.1A) has made the task

of solving (1.2A) much easier. To see this, let us consider the duals of (L.IA) and (l.2A),

which am (L.IB) and (1.2B) respectively.

yA<_c (I. IB) "

max yb ..

yA <c+d (1.2B)

Let x0 be an optimal solution to (L.IA) and Yo an optimal solution to its dual (l.IB). Define

e=c-y.A, and call e the slack vector in (I.IB). By (L.IB), e>O. Note that by complemen-

tary slackness exo=0. Now substitute Yo+Y for y in (1.2B) and simplify to obtain (1.3B)

below.

_.3

5"3.'

I ,;-0
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max yb S

yA -d+e (1.3B)

The dual of (1.3B) is (1.3A) below.

min (d+e)x

Ax=b (1.3A)

Let us examine xo as a tentative solution to (1.3A). Since ex.=O, it follows that 1

(d+e)xo=do. At this point let us assume ae following:

(i) d is non-negative, integral. ""

(ii) A, b, and c am integral.

(iii) Ax=b defines a polyhedron with integral vertices.

(iv) e is integral.

Many optimization problems satisfy the above assumptions.

Since d and e are non-negative, the optimal value of (1.3A) iq non-negative. As the

cost of xo is dxo, xo is within dxo of the optimal value. Let (x ,y t) be an optimal pair of solu-

tions to (1.3A),(1.3B). For each j, if (x I),>0, then by complementary slackness of (x ,y 1) we :,. ,-

have: l)

(yA)j=(d+e)j. '

Consequently ((yor+y )A)j=(yo4)j+(yA)j=(c-e)j+(d+e)j=(c+d)j. Thus we see that -

(x ,yo+y 1) exhibits complementary slackness with respect to (1.2A),(1.2B) implying that the 1

pair is optimal for (I.2A),(l.2B). Therefore a solution to (1.3A) itself is a solution to (1.2A). "

Also note that since yob=cxo, Yo is a feasible solution of (1.2B) and is within dxo of the

optimum.

I'
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Let us examine the problem P defined below. •

min gx (g is integral)

Ax=b (1.4A)

X;?O

Assume (ii) and (iii) hold for P. Define d=g mod 2 and c=g-d. Hence L- =c. By

definition, d is 0-1 and c is a vector of even integers. The scaling algorithm first solves a

problem P' by changing g to L J:

min -- c isinerl
V0

Ax=b (1.5A)

X ZO

Note that (1.5A) satisfies conditions (ii) and (iii). Suppose we solve (1.5A) recursively.

If (x1,y I) is an optimal solution to (1.5A) and its dual, then (x1,2y 1) is an optimal solution to

(.1A),(L.1B). Therefore the slack e=c-2y A in (I.1B) is twice the slack -c-y A in the dual

of (1.5A). Thus if the entries in yI are integral multiples of -1 (i.e., half-integers), then e is

integral, and (1.3A) satisfies conditions (i)-(iv). The scaling algorithm then has to solve

(1.3A),(1.3B) to produce a solution of (1.4A). Thus we have broken the problem P into

(I.1A) and (1.3A). Problem (I.1A) is equivalent to (1.5A), and the largest component in the

cost vector of (1.5A) is at most half of the largest component in (1.4A). Working under

assumptions (i)-(iv), we shall examine (1.3A),(1.3B) closely.

Let xo be a solution to (I.IA) and define k=dx0. Since Ax=b has integral solutions, k A

is an integer. Then "trim" the vector d+e in (1.3A) as follows. Replace all entries in d+e that

are greater than k by k+l. This trimming does not change the solutions to (1.3A) because we

know that if the j th component of d+e is larger than k, then the corresponding x, cannot be

a,
A jA -,

L !-,42 -. -. -,-, --. - , - - - ", , -, '.',-, ',.','.- .*','-".,"." , .- , ,' ' '
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positive in the optimal solution because the optimal value of (1.3A) is strictly less than k+l.

Alternatively, delete the columns in A corresponding to the entries greater than k in d+e to V.

get a reduced (1.3A). Thus if e is integral, then to solve (1.2A) we just have to solve the '. Or

problem below, which we call the tuning problem. I-V

min (d+e)x (d+e is trimmed) .

Ax=;b (1.6A)

XO%

We call the vector d+e the offset. Since the vector d+e can take values from the finite set

{0,...,k+l) we call the problem semi-combinatorial [7]. Efficient data structures may then be

used solve the new (1.6A). 
I

In summary, we see that the problem (1.4A) can be broken into two problems that

have the same format as (1.4A), viz. (1.5A) and (1.6A). Problem (1.5A) may be solved recur- I)

sively. Problem (1.6A), the tuning problem, depends on (1.5A) only through the slack vector

for the solution to (1.5A). The solution to (1.6A) is also the solution to (1.4A). The optimal

value of (1.6A) is bounded by dx0 where xo is a non-negative solution to Ax=b.

For many combinatorial problems, although A, b, and c are integral, the components

of the optimal solutions of (I.I B) are not integral but are integral multiples of T where I is I

an integer. In Section 3 we shall examine specific LPs with 1=2 and 1=4. In this situation, -

instead of scaling by 2, scale by the factor 1. That is, given the problem: -p
-.

min gx

Ax=b (1.4A)

put d=g mod I and c=g--d. Now (I.IA) is equivalent to the problem (1.5C) below, which is p

again solved recursively.

I,

.. . . ... .. . ... . • .- ...- , , -;'. .....-', '.;..'." ,-,,,.","...'."..€ ,-?#'.' .,'',"'.',,', :" -7,'- : V
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mmin( )x ,J

Ax--,b (l.5C) " en.the

As - too is integral, A, b, and the cost vector are all integraL By hypothesis, the optimal

values for the dual variables of (1.5C) are multiples of By multiplying the dual varablis

of (.5C) by l we obtain an optimal solution for (1.lB), which must be integral Then the

slack vector e=c-yoA is integral thus ensuring that the tuning problem satisfies assumptions

(i), (ii), and (iii), above. p

.N

We now show that the tuning problem (.6A) itself cannot be wo.ved by sealing. For.--

~~~~~let d4-e=ct+d 1 where the components of d1 are in {0,1} (respectively in {0... -})and c1 is .<-

even (respectively divisible by 1). By complementary slackness, if (xo)/>0, then . .!

! (ci),=----/1 = --/ - =, making c ixo--O. Hence the new scaled down problem '

max.-w,

.(.5C) for (1.6A) has zero as its optimal value, (Xo itself being a solution.

We have discussed scaling on LPs involving minimization of a cost function. If the ,

given LP is a maximizing problem, then a slight modification of scaling may be used. Exam- a'

ne problems (.7A) and its dual (1.7B), and (1.8), (1.9) below.(

max x,

" A~r--b (l.7A) "

- . 'w

min yb ,.:.
V.. " .%

yA w (1.7B) -.-
'V.'',
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Ie

Ax=b (1.8)

x O

max L wX

Ax--b (1.9) S.

For convenience we refer to LP (1.7A) as P(w), (1.7B) as DP(w), (1.8) as P(f ), and

(1.9) as P (L- ). We claim that the scaled down problem should be taken as P'(r )

instead of P (L .S ) for the following two reasons:

(a) If P is a maximizing problem, then its dual DP is a minimizing problem. Thus if

yo is a solution to DP (L .. j ), then 2yo need not even be feasible for DP (w), whereas if y I is X

a solution to DP( F- ), then 2y I is certainly feasible for DP (w).

(b) The slack vector e=w-yoA is non-positive, hence it is useful to have d (as in

assumption (i) above) non-positive. Observe that in the case of scaling on a minimization

problem, the costs of intermediate dual solutions at succesive scales increase monotonically.

In the case of a maximization problem, choosing P r . ) as the scaled down problem makes

wo

the cost of intermediate dual solutions decrease monotonically. ,

We can apply the observations of this section to simplify Gabow's algorithm for max-

imum cost weighted general matching [4]. Gabow uses P . J ) as the scaled down problem. ,-.,%

The dual variables then require a slight adjustment to retain feasibility (see (a) above). His ..

algorithm and its correctness proof may be simplified by choosing P([ ) as the scaled

down problem. This follows from (a) and (b) above. Furthermore, as 1=4 (i.e., the dual ,'

.. N
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variables are multiples of -) it is more convenient to scale by 4 than by 2. Consequently, for

a simpler algorithm P ( [ ) may be chosen as the scaled down problem.

! 2-

0

t7p

. I

N, 
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CHAPTER 2

APPROXIMATE COMPLEMENTARY SLACKNESS -"

2.1 Bertsekas's Approximate Complementary Slackness. Consider the linear pro-

gram (2.1A) and its dual (2.1B).

max cx

Ax=b (2.1A) W

min yb N-.

yA Sc (2.1B)

Let xO be feasible in (2.1A) and yO be feasible in (2.lB). Define the slack vector

e6c-y°A. By complementary slackness, the pair (x,y 0) is optimal in (2.1A),(2.1B) respec-

tively if and only if e~x=O. Restated, (x°,y°) is optimal if for all j, whenever ej>O, xj0 =O.

Bertsekas [1] introduced the notion of "approximate" complementary slackness for the -

min-cost flow problem. Call the pair of feasible solutions (x1,y1) £-optimal if e3 L implies 5'

x,=0 for all j. Note that a 0-optimal solution is an optimal solution to (2.1A),(2.lB) because "p

it satisfies the complementary slackness conditions.

Approximate complementary slackness has been used to design efficient algorithms

for network problems [5,61. For a given problem, it is first proved that there exists an eo>0 t

such that if a solution is ecroptimal, then it is 0-optimal. This Eo is specific to each problem -,

and depends on the values the dual variables can take. The typical algorithm first starts with

an initial guess (x°,y°). If (x°,y°) is 0-optimal, then the algorithm stops since (x°,y°) are

optimal. If the solution is not 0-optimal, then there must exist an e such that x0,y0 is -"
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optimal: For example, we can take e=max (cj-(y°A)j). This c-optimal solution is used toJ

tan -optima solution, which is then used to generate an T-optimal solution, and

so on, until finally we arrive at an co-optimal solution. This process may be alternatively

viewed as follows. Consider the scaled version of (2. IA), where the scaling factor is 2 k, i.e.,

the new cost function is L - as shown below. -:

20

min L:- x

Ax=b (2.2A)

Let (xtyk) be an optimal solution to (2.2A) and its dual. Then (xt,2.ky) is a 2-.

optimal solution to (2.1A) because (xk,yk) is an optimal solution to (2.2A). If there existed a

j such that (c-2ky,,A)j>2k but (xt),>O then 4'2". -ytA)j>O but (xt)j>O, contradicting S
P?

complementary slackness of (xk,yk) in (2.2A). Thus, one way to arrive at a 2-loptimal solu-

tion would be to solve the uMning problem for (2.2A) to obtain an optimal solution for the LP

with cost vector of L 2- . This process is continued until it finally arrives at a ko such that

2ko<Eo specified previously.

If problem (2.1) satisfies assumtions (ii) and (iii) of Section 1, and the dual variables .

are multiples of (1 is an integer), then the components of the slack vector are integral mul-

tiples of I Therefore the value of eo is precisely 1 where 1 is also the scaling factor dis-

cussed in the Section 1. For the bipartite matching LP eo=T, and for the general matching LP
P

.. . .. . . -,... . € .- ,- , C-. %,_ W , a.j-...a ,-, g L : , M ... , . . ,, , ,' .. ,,.*- .. , % _ '.. -_ a. a,_ -
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2.2 k-feasibility and k-opthnality. Taijan and Gabow [5] applied an alternate formu-

lation of approximate complementary slackness to the bipartite matching LP. We shall

attempt to generalize and give linear programming interpretations of their formulation. For

the LP (2.1lA) and a non-negative vector k, the pair of vectors (xt yk) is called k -feasible if 1

(i) (xk), >0implies (YkA )1=cj

(ii) (xk)j=O implies (ykA )j!,.+k,

Define the vector xt to be k-optimal if it is k-feasible and Xk is feasible in its LP a

(2. lA), i.e., Axk=b. But note that the vectors of a k-feasible pair need not even be feasible in

their respective LUs.

Let us first analyse how close a k-optimal solution xt is to the optimal value for

(2.lIA). First note that (xkyk) is feasible in the following LP and its dual.

mmn (c +k)x -

Ax =b (2.3)
Ik

max yb

yA:5c+k : .

Note that

(c+k)xk-ykb = (c+k)xt- ykA )xk = (c+k-ykA )xk.

By k-optimality of (xkyt), if (xk),)O then (ytA )j=cj. Hence, for all j
(C+k-YkA)j(xk),--kj(xk)j. Consequently, (c+k)xt-ykb!lCkt. This implies that Xk is within

Iaht of the optimal value for (2.3). And if xO is an optimal solution to (2.I1A), then the optimalI
value for (2.3) is at most kxo away from that of (2.l1A). Thus Xk is within k(xo+xk) of the

optimal value of (23IA) andxk is feasible in (2.IA). Define IIx I I to be the 11 norm of vector

x. If all the solutions of Ax =b are bounded, i.e., I Ixi I I--n for all solutions of Ax =b, then xk
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is within m=n I I k I I of the optimal value for (2.1A).

The algorithm to achieve this k-optimal solution proceeds as follows: First the cost

finction c in (2.IA) is multiplied by m+l. This ensures that any k-optimal solution to this

modified (2.1A) is also optimal for it. A starting k-feasible solution xo is then selected.

Through successive refinements this k-feasible solution is made k-optimal. Note that k-

feasibility is more relaxed than complementary slackness (or 0-optimality) and is potentially
0

easier to maintain.

Now what remains is the specification of the refinement procedure. This refinement

procedure should start with a k-feasible solution (x y 1) and produce another k-feasible solu-

don that is either k-optimal or "better" than (xl,y 1).

Here, we state a refinement procedure that is a modified relaxation of the Primal-Dual

algorithm. It may be interpreted as a generalization of procedure Match of [5]. Let us first

review the Primal-Dual algorithm [7]. Given an LP P, its dual DP, and vector x feasible in

DP, the Primal-Dual algorithm first constructs the restricted primal RP and its dual DRP.

Optimal solutions x',ie for RP and DRP are found, and x is upgraded to w+Oc', where 0 is

chosen appropriately. Since (x',') are optimal for RP and DRP, x' and x+Oe' satisfy the

complementary slackness condition. Note that x' itself need not be feasible in P. The

efficiency of the Primal-Dual algorithm lies in this inheritance of complementary slackness, '--

as at the beginning of the next iteration we have a valid candidate solution to start with. '%3"

For a given LP P as in (2.1A) and a vector x, define the k-perturbed LP P(x) with

respect to x to be the dual of the following LP:

max yb

yA,c +Sk
where

&,-
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8j = if Xj >0,

8j=l if xj=0.

Note that if (xk yk) is k-feasible for P and its dual, then (xkyk) satisfies complementary .',

slackness conditions with respect to P (x). Also note that while xk need not be feasible in the

primal, Y is always feasible in the dual of P (x).

We now state procedure Refine below. '-

Procedure Refine

(Input: (xoyo) which is k-feasible in P and its dual

Output : (x 1,y 1) k-feasible or k-optimal. }

Step 0. Find the restricted primal RP with respect to P (xo).

Step 1. In RP find a k-optimal solution, if one exists. Otherwise find a "better" k-feasible

solution x1. Modify the dual variables from Yo to yI such that xI is optimal in the RP with S

respect to P (x ).

Step 2. Update the dual variables as in the Primal-Dual algorithm until a better k-feasible

solution can be found. 0

In Step I, if a k-optimal solution is found, then this solution is the desired k-optimal

solution. If not, then the dual variable modifications ensure that (x 1,y 1) maintain complemen-

tary slackness in the RP of P (x i). This ensures the validity of Step 2, because complementary

slackness of (xi,y1) after Step I is required for Step 2 to work. Step I involves finding a vec-

tory I that is feasible in the dual of P (x i) and maintains complementary slackness with x 1.

This process may be made more efficient if a "better" x, is found in a systematic way. Step 2

essentially looks for an optimal solution to P(xl), and therefore unless xi is k-optimal, a

better k-feasible solution can always be found. Thus at the end of Step 2, we are guranteed

that a better solution can indeed be found. The computational convenience of the algorithm is

A2

, , .. .. .. .. .. -- . ,' " ,- - . ,e ._,".*-,---."-"? '.,"i"", ,, ,,w,, _ -, £ ,N ,,',".'.''. ''.'.,,5 .€',.'
"' .' '; -' ' '
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discussed in the Section 2.3, S

We shall compare our procedure Refine witn procedure Match in [5], which solves

the weighted bipartite matching problem for the graph G (V1,V 2,E). Define 1=(i, i... ,l). Pro-

cedure Match finds a 1-optimal matching. thus k=(l,l .... 1) for Match. Let y(v) be the dual .1

variable associated with vertex v and c (v,w) be the cost of edge (v,w). If M is a matching .

(not neccesarily complete ), then an edge (vw) is called eligible if
S

y(v)+y (w)=c (v,w)+[if (vw) e M then 0 else I).

Procedure Match

Step 1. Find a maximal set A of vertex disjoint augmenting paths of eligible edges. For each

path P r A, augment the matching along P, and for each vertex w e V I f(,P, decrease y (w)

by 1, (This makes the new matching M' 1-feasible.) If the new matching M' is complete,

halt.

Step 2. Do a Hungarian search to adjust the duals and find an augmenting path of eligible

edges. 0

Note that the set of eligible edges generates precisely the RP of P(M). Step 1 of

Match is equivalent to Step 1 of Refine. Finding a maxinal set of augmenting paths and

decrementing partially the dual variables ensure that the new matching and the dual variables

maintain complementary slackness, and that the new matching is optimal in the RP with

respect to the new duals. This ensures the validity of the Hungarian search of Step 2. Let us

look at Step I of Match more closely. In particular, we shall examine the notion of "better"

k-feasible solution (Step 1 of Refine) in relation to Match. First note that any intermediate

1-feasible solution xo (in Match) satisfies Axo_5b, where A ,b are from the bipartite matching ',v

LP primal, because xo always represents a matching, though not neccesarily a complete

matching. Thus x1 , another 1-feasible solution, may be called better than xo if the slacks

/%P

.0.-
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satisfy I I b-AxO I 1> I I b-Ax 1 1 . Since the matrix A for the bipartite matching LP is totally .'

ft.

uidular, for integral intermediate k-feasible solutions (x 1,y 1), 11 b -Ax 1II I is integral.

Thus I I b-Ax I II is a good measure of x 1, because as long as our intermediate solutions

remain integral, the measure is integral and decreases at every execution of Refine. We call

this measure the slack measure of goodness. Consequently if in Step I of Refine we use this

-ft.

notion of betterness, then finding a better k-feasible solution is equivalent to finding augment- 1J4

ing paths, flows etc. for standard .s (matching, network flows etc.).

2.3 Procedure Refine and The Tuning Problel In this subsection we shall present a

subjective analysis of the application of Refine to the tuning problem arising from scaling.

We noted in Section 1 that the tuning problem itself cannot be simplified by further scaling.

We also noted, however, that the optimal value of the tuning problem is bounded by I I x 1,

where x a is the solution to the previous scale (assuming we ar scaling by 2). Let us apply

Refine, with the slack measure, to the tuning problem in order to find a k-feasible solution .

for it. As the tuning problem, is the core of the scaling algorithm, we need to estimate how

efficient Refine is on the tuning problem.

Let us analyse the number of iterations required for Refine to arrive at a k-feasible -

solution. First, in Step I we see that the tentative k-feasible solution improves in slack, i.e.,

II b-Ax1 I I>1 Ib-Axo1 I, while in Step 2 we see that there is an improvement in the dual

function value. Step 2 of Refine is identical to that of the Primal-Dual algorithm, and hence

this improvement is guranteed. Further, we also know that the optimal value to the problem

cannot exceed I I x. I I. Then if the dual variable increments are directly related to the slack

measure I Ib-Ax II and the dual variable modification of Step I does not substantially

decrement the dual variables, then Refine converges quickly to a k-feasible solution. In other

words, if Step I is slow in finding k-feasible solutions, then as the slack measures are large,

Step 2 increments dual variables rapidly, and vice-versa. But the cost of the dual solution is -

* ft
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bounded by I Ix. I I because the optimum value of the tuning problem is bounded I Ix. -.

Hence, at every iteration of Refine, either the slack measure decreases or the cost of the dual

solution approaches its upper bound. This puts an upper bound on the number of iterations of

Refine required. The situation of the dual variable update being directly related to the slack

measure is common to most of the network flow LPs. In procedure Match, for example, at

each execution of Step 2, the increase in the cost of the dual variables is -'no, where no is /S

the number of unmatched vertices at that stage. But no=-I lb-Ax II, the measure ofx, in the

bipartite matching LP. Thus the dual variable update is indeed directly related to the good-

ness measure.

,S.

*o j
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CHAPTER 3

APPLICATIONS

In the previous sections we have established some facts about scaling. This section

shows how these facts have been used by other researchers in earlier papers. -

3.1 Shortest Paths with Non-Negative Edge Lengths. For a directed graph G (VE)

and a non-negative integer length lij associated with each arc (i .j) in E, the shortest path

problem'is to find directed paths of minimum length from a distinguished source vertex s to ,-N

all other vertices of G. Let m= E I We shall present Gabow's algorithm [3] for the problem

and show that it is an instance of the more general algorithm of scaling of linear prgrams. ,' '

Gabow first defines a "near-optimum" solution as a vector p, with one entry pi for each ver-

tex i, such that:

(i) P,=O.

(ii) p dominates edge lengths, that is, for any edge ij, pi+ij .Pj where lijjZO.

(iii) The length of the shortest path from s to i is between pi and pi +m.

Thus Pi is an estimate of the distance from s to i. J.

Let P be our original problem and let P' be the scaled down problem (weights lij
I.'

replaced by L -J )- Gabow then proceeds as follows: Recursively obtain the optimal distance

vector pi' for P'. Define p=2p'. Then p is a near-optimum distance vector for P. Using this

near-optimum pi, compute modified edge lengths, hi-=1jj-(pj-pi). Compute shortest paths
,,

on G with the modified edge lengths lij" using Dijkstra's algorithm. The shortest paths on

this modified graph are the shortest paths for the problem P.

e-. 4?4.............................
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The efficiency of the algorithm hinges on the use of an array Q [O,...,m] as the priority

queue in Dijkstra's algorithm. Q(k) stores vertices at tentative distance k. From property

(iii) above of a near-optimal solution, the distances in the modified graph ae at most m, and

this implies that Q suffices as the priority queue. Since solving this modified problem takes

O(m) time, P can be solved in O(m log N) time, where N is the largest weight in P, which

is the largest edge cost.

Now we frame the shortest path problem as an LP and interpret Gabow's algorithm in

relation to the results from Section 1. The shortest path LP is stated below:

Af =b (3.l1A)

where bn(n-l),ll .... T, n VI , and A is the nxm edge incidence matrix with the first

row representing the source s. Its dual is:

max ''i-(n-l)p"

pA !-.1 (3.l1B)
Note that the LP in (3.1A) satisfies assumptions (ii) and (iii) of Section 1. From the dual LP,

we see that the pi's in Gabow's algorithm are the dual variables of the shortest path LP for

P'. The modified problem of Gabow is then precisely the tuning problem (1.6A) of Section 1

because

li=j-(pj-pi)=4 -j +l4 mod 2-(pj-pj)

which is precisely dij+ej, the offset defined in Section 1. Furthermore the solution to the tun-

ing problem (1.6A) is a solution to P(1.4A), ensuring that the shortest paths on the modified

graph are the shortest paths on the original graph, and thus proving the correctness of

Gabow's algorithm.
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In this case e is integral, and the trimming of d+e suggested in Section 1 guarantees

the effective use of Q as the priority queue. The above example illustrates that the tuning

problem may sometimes be efficiently solved using data structures that utilize the integrality -
and boundedness of the offset.

3.2 Weighted Bipartite Matchings. We study the scaling algorithm of Gabow for

weighted bipartite matching [3]. This algorithm shows how scaling applies to the Primal-
t

Dual algorithm for solving linear programs.

Let G(V 1,V 2,E) be a bipartite graph, where VI and V 2 are vertex sets of the same size ,

and E is the edge set. Given an integer cost function cy, on E. the problem is to a find a com-

plete matching in G of mimimum cost. Let n= "vi .

The LP of the weighted bipartite matching problem is given below.

min Fjsxij

J xiJ=l i=l,....n (3.2A) "'5

._xi,=l

xis O forallij

The dual of this problem is: 6

max, a"j+

aj-O~i'j.j for all i=l,...n, j=l...,n. (3.2B)

We note that for bipartite matchings .,

(a) The bipartite matching LP satisfies assumptions (ii) and (iii) of Section 1.

I
(b) In the Primal-Dual algorithm, at every step the value of the optimizing function

increses by at least I

I

--- .o -..,,- --. ', '.'. , ... . ,%'' ". ,' , % 
,
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(c) If all the edge costs are integers, then the dual variables are multiples of "I. ,

Points (b) and (c) above may be proved as follows. Let us define the parity of a

number as 1 if it is an odd multiple of 1, 0 if it is an even multiple, and undefined otherwise.

Claim. At all times during the execution of the Primal-Dual algorithm on (3.2A) and

(3.2B), all the dual variables have the same parity.

Proof. By induction on the number of steps, or dual variable modifications. The initial

values of the dual variables are:

ai=O for i=l..n.

Ojflin cij

As all of {cij are integral, all of fai and j} are of parityO. ?

Recall that to modify the dual variables, first G= (cij-(Y--Oj) is calculated over a

subset of the edges. Thus if all the dual variables have the same parity, then the parity of

o'+3 j is 0, and the parity of 0 is well defined. At every step the dual variables are modified as

follows: ao4-%-.0±, Pj,-Oj±O. All the modified dual variables will then have the same par- ,

ity. Thus at all times the dual variables are half-integers and (c) above is true. 0 A

To establish (b), the increase in the dual objective function is 0X'b [7, Section 5.21),

where x' is a solution to the dual restricted problem DRP. In our case x' is integral and ,

b'=[ I, I... I IT. Thus the increase must be an integral multiple of 0, which is at least

Point (c) above suggests scaling by 2. In this subsection and the next, we shall use y

(with or without subscripts) to refer to all the dual variables collectively. If (x1,y 1) is an .

optimal solution to (1.5A) and its dual, then (xl,2yI) is a feasible solution to (1.4A),(1.4B).

Further, from (c) we see that (x 1,2y 1) is integral. Therefore the vector e is integral. Then the

problem (1.6A) is another bipartite matching problem with integral edge costs. Furthermore

O U
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the optimal value of this problem is at most &I-1, Now there are two options. Either we .,.

could start with 2y I as an initial choice for (1.2B) and work toward the optimum, or we could ,

solve (1.6A), in both cases using the Primal-Dual algorithm. Because of (a), in either case

there can be 0 (n) dual variable updates (steps). Gabow obtained a fast algorithm that takes

the first option. That there are only 0 (n) steps is crucial in the analysis. .

3.3 Weighted General Matchings. Given a complete graph G(VE) and an integer I

cost function cij on E, the problem is to find a complete matching of minimum cost. Let

Consider the general matching LP and its dual below [7, Section 11.3]. Suppose there

are N odd-sets S ,...,SN, and, for each k let = ,..

rain Yci xij

xil iffl... ,n (3.3A)

, xij +wk=sk for each odd-set Sk k=l,..,N.i, e S1

xi O wk>O

max 4+Xhk (3.3B)

oiqaj+ I yk~cy for all i,j:n

ykt. for all k.!V .%

We note that

(a) The general matching LP satisfies assumptions (ii) and (iii) of Section 1.

(b) At every step in the Primal-Dual algorithm the value of the objective function S

increases by at least -. .5. ,S

o. , IVW
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' ~(c) If all edge Costs are integers, then the dual variables are multiples of (i.e.,,,ee

quarter-integers).

Statements (b) and (c) above may be proved as follows. Let us define the parity of a

I
number as 0 if it is an even multiple of-T, I if it is an odd multiple, and undefined otherwise. . -

The parity of a set is defined only if all the elements of the set have the same parity, and then ;,

* V

the parity of the set is defined to be the parity of any of its elements. a

Let us partition V into two sets, M and X, depending on the current matching on the

graph: M contains the matched vetices and X the exposed ones. Initially, in the Primal-Dual

algorithm, V=X, and the algorithm proceeds by successively reducing X. Thus once a vertex

has been matched it will remain matched (although its mate may change).

ThepAn edge (ij) of G is called tight with respect to the cusnt dual variables if

"ai- upj+t i yk=cij. Te algorithm constructs the current or tight graph Gt which is the

alit,VX, an'h loih rcesbyscesvl euigX Ths ne ere

graph induced by the tight edges at that stage [7, Section 11.31 and updates the previous

matching. In this process some vertices of X may become matched. For this to happen, these -

vertices must be connected to some vertices in M by edges in G, (i.e., tight edges).

Claim. Let M, X be a partition of V as defined above. Then

(i) All dual variables a, for ieM have the same parity.

(ii) All 4 for i e X have parityO. '

(iii) All the odd-set variables yt, have parity 0.

Note that parity (M) need not be the same as parity (X).

Proof. By induction on the number of steps or dual variable modifications. The initial .4..

solution for the dual variables is:

u'4



24

a= mim cij, y=O for all k. 6

Since initially X=V and every cii is an integer, our claim is true for the initial solution.

Recall that the dual variables are modified according to the following rule:

81=.,imin (cij'-c1 -aj :(i,j)eTaMxM) (for the exact definition of T see [7, Section

11.31)

&2=,in~cj-a--z :eMjeX)

-Yii

O==min(81, 62, 83)

a --0c- ± for i r M

a . - otherwise (i.e., i eX)

Let M i, X i be the partition before a step and M 2, X 2 after the step. By construction,

MIQM2. Assume that the dual variables satisfy the claim before the step. Then we show that

the dual variables satisfy the claim after the step.

If M =M2, then for ,jrM (-M2 ), since parity (i)=parity( aj), parity(oa.+aj)=O.

Therefore parity (81)=O. Similarly parity (82)=parity (MI) because for jeXj(=Xz),

parity (ct,)g). Clearly 83 is also a quarter-integer. The update rule for dual variables then

makes the claim true for the new values of dual variables.

If M 1,M 2, then some vertices of XI are now matched. These newly matched vertices

must be connected to vertices in MI in the tight graph G,. Therefore there exist j E M2rX 1,

j and i e M such that the edge (ij) is tight. Now the parities of a,, yk and cij are 0. Hence

parity (ai )=O=parity (Mi). Thus 8 will be a quarter-integer and the the claim will hold for the
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new values of the dual variables. 0 :

So we see that at all times during the execution of the algorithm the dual variables 1'

have a defined parity and are therefore quarter-integers. Statement (b) can be proved in a

fashion similar to that for bipartite graphs.

Statement (c) above suggests scaling by 4. The scaled primal (3.4A) and its dual

(3.4B) appear below.

minj XL"

xjj'= ... (3.4A)

x. i +wk'-est for k=l,...,N.

x/ 0 "O Wj-''o

%

max ai sk Yk (3.4B) e

_. X k'L- for all i, jn

Yk' - for all k<_N

Thus if (x 1,y1 ) is a solution to (3.4A,B), then (x ,4y1 ) is a feasible solution to (3.3A,B)

3n:which is within dx l! of the optimum. At this point if we should start with 4y I as an initial

choice for (3.3B) and attempt to use Edmonds's algorithm, then we would run into a prob-

lem. Edmonds's algorithm needs the following invariants to be true at all stages of the algo-

rithm.

I The xq are 0-1, and they form a matching of the graph induced by the tight edges. .'.

II If k <0 then Sk is full, i.e., Sk has sk matched edges.



.

26

II If yj <0, Yk <0 and Sj r& S*0 then Sj o.Sk or Sj QSk.

We call a feasible solution tight if it obeys the above invariants. Whereas (xly 1) is tight for

(1.5A) and its duaL (x1.4y1) may not be tight for (1.4A) and its dual (1.4B). Gabow's algo-

rithm [41 circumvents this problem by modifying (x 1,4y 1) to another feasible solution that is

tight and also within 0(n) of the optimal value of the matching.

We approach the problem in another way. Now consider a solution to (3.4AB). If in

the dual solution some odd-set variables yi' are negative (i.e., yj'= <O), then the slack vector

e has positive entries corresponding to the negative valued odd-set variables. Then the tan-

ing problem (3.5A) and its dual (3.5B) are:

min Ycjj"Xij +A*,,k

(3.5A) 4

i T , + Yk='St fork=l,...,N

xj1 1 O Ytk -O

max c4' S+ yjy' (3.5B)

o,'+a'+. yk':cij" for all i ,j n

Yk '<yf for all k SQ'
Thus the format of the tuning problem is different from from the standard matching prob-

lem. The crucial difference here is that unlike the general matching LP, some odd-set vari-

ables have positive weights in the cost function. The combinatorial meaning of this is that the

weighted blossoms (which were full) in the solution of (3.4A) are to be made as full as possi-

ble in the tuning problem. We shall call the above format the tuning format of the matching J

problem.
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We shall adapt Edmonds's algorithm to this format of the matching problem. First

extend the invariants to I',I',IU' as shown below.

I' The xj are 0-1, and they form a matching of the graph induced by the tight edges.

I' If yk'<yf then Sk is full.

III' If yj'<yO, yk'<P, and Sj,Sk 0, then Sj Sk or Sj St.

Consider the initial solution to (3.5B).

c4' i JESj .'.,

Yk~Y

It is clear that the above solution is indeed feasible in (3.5B). We shall formulate some upper

and lower bounds for the cost function evaluated on this solution.

Let the scaled down LP (3.4A) refer to the graph G', with scaled down edge costs.

Suppose the problem (3.4A) has been solved recursively, hence we have a minimum cost

matching of G'. These matched edges must be tight in the LP (3.4B). This implies that the

slack eij-O for every matched edge (i j) in G'. This in turn implies that in (3.5B), .0

Cij '=dij +e =dij-= cij mod 4 < 3.

Thus

",-_-j, I...,
.11 i. G"(Cr i ,/ j Si m- e.u" .

Thus 3 is an upper bound on the cost of an optimal solution to (3.5B). Also note that

0.iJ, i"%) 2- 7

Therefore

12.S
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Define o= y2. From Section 1 we know that the optimal value of the tuning problem

(3.5A) is at most The value of our initial solution to (3.5B) is at least --a.
i~~

Next we show that Edmonds's algorithm may be extended to the tuning format of the

matching problem. First define J, and Jb as follows. S

J =10(- j) I CVxj'--z" Yk'=Cj)

J=(Sk I k

The Primal-Dual algorithm solves the tuning format of the weighted matching problem as

follows: Start with the above initial dual feasible solution and then perform several iterations

of solving a restricted primal (3.6A) stated below, and update of the dual solution accord- '

ingly. The restricted primal (3.6A) depends on the sets J., Jb above.

min x,42+2 Ax.-+,

Jtxij+xVa-I i=1 ....n (3.6A)

Sxij+wk+xg.k=s k=l,...,N
ie Sm

S
xij _0 (ij) not r= J, -- xij =0 ,

Wk _>O Sk not e Jb -yk =0" tile

The dual of (3.6A) is (3.6B) below. "

max (Xi+ S+ ,Yk

4 t Yk O50 iJ. (3.6B)
Ij e S,

Yk _<O

_ ,

i\A J~ . JY *~.: *-~' ~: -a "'I
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o <1 foralli, 'yk< 2  forallk

Note that the restricted primal and dual problems for the standard format and the tuning for-

mat are identical. Under the modified invariants l,II' and fI1', Edmonds's algorithm may be

used to obtain an opnimal solution to (3.5A) and (3.5B). The next question is the time

analysis of the above procedure on (3.5A),(3.SB). First note that the cost of our initial solu-

tion to (3.5B) is at least --a. After the trimming procedure of Section 1 each entry in

ZCijXij+XYRk,
V 4,

the cost vector of (3.5A) can be made less than +2. Further, since the yf's were obtained

from the previous scale, the odd-sets corresponding to these variables represent a valid blos-

som structure. This implies that the number of non-zero yf equals the number of blossoms in

the previous scale and thus is bounded by n. As each y2 is less than -1+2, a is 0 (n2). But

the optimal value of (3.5B) is at most Thus our initial solution is O (12) away from the -

optimum.

Next we attempt to bound the number of dual variable updates, or steps, required by

the modified Edmonds's algorithm starting with the stated initial solution. First note that

O=inin(81 62, 63) is at least If at aystage duigthe execution of the algorithmn the

number of exposed vertices is f, then the value of the cost function increases by Of in that

step, which is at least

Initially all vertices are exposed and finally none remain exposed. Let ki be the

number of steps between the ith and the (i+l)st augmentation. Then ki:_n for all i (See [7),

Section 11.3 ). Each augmentation reduces the number of exposed vertices by 2. Furthermore,

we know that the total increase in the cost function is O(n 2). Since the ith augmentation,'-.

increases the value of the objective function by n-2i, finding an upper bound on the total

Z
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number of steps reduces to the foliwing problem. S

ki (n-2i )=cn2

k.j:n and kiZ!O for all i.

The optimal value of the above problem is easily seen to be 0 (n 1.5), which is better than

O(n2), our previous estimate. This is going to reduce the number of steps required for ,

Edmonds's algorithm.

N

..,

",
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CONCLUSIONS -

The scaling approach has been widely used to design efficient algorithms for specific

problems. The highlight of this paper was to examine scaling from a more general framework

of linear programs (Ls) and to present a unified picture of scaling. Thus scaling may be seen -

as another approach to solving LPs. We showed that the typical scaling algorithm depends,

for its efficiency, on (what we call) the tuning problem. The tuning problem (Ti) is the prob-

lem of translating a solution to the previous scale into a solution to the current scale, and it is

the only problem specific part of the algorithm. The TP, although similar in format to the ori-

ginal problem, is much simpler.

Scaling fails on the tuning problem. Most algorithms use problem-specific approaches

that exploit the structure of the TP. Gabow and Tarjan proposed an approximation algorithm

for the Ti that arises from the general weighted matching problem. We generalised this

approach to some extent and showed its relation to the Primal-Dual algorithm. The analysis

of the above approach is very tedious, and we feel that a more general framework is required.

Another approach to the solution of LPs was Bertsekas's relaxed complementary

slackness. We showed that this may be seen as the dual of the scaling approach, i.e., scaling

of the primal problem is equivalent to Bertsekas's approach to the dual problem.

%R

.Nr -F ,z
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